| 17.02.2020
В киберпространстве у преступников всегда было несправедливое преимущество: им нужно найти только одну уязвимость, чтобы нанести ущерб всей системе. Достаточно одного неверно настроенного устройства или устаревшей операционной системы. С другой стороны, команды по обеспечению кибербезопасности должны работать над тем, чтобы предвидеть сотни типов атак, а затем заблокировать их на всех устройствах сети.
Это отчасти объясняет почему расходы на кибербезопасность продолжают расти и могут достичь 133,8 млрд. долл. к 2022 году, согласно данным IDC. Тем не менее, киберпреступность по-прежнему обходится предприятиям примерно в двое дороже их общих расходов на безопасность.
По мере того, как ставки повышаются в связи с ростом на предприятиях количества подключенных устройств и приложений, лицам, принимающим решения, необходимо переосмыслить подход к кибербезопасности. И при формировании стратегий, нужно помнить о трех базовых направлениях работы:
В то время как автоматизация ускоряет время отклика, а машинное обучение может выявить признаки возможной угрозы, искусственный интеллект способен за доли секунды принять решение, соответствующие по уровню человеческому, и даже предвидеть будущие киберугрозы. Однако использование ИИ для защиты системы означает гигантский технологический прорыв. Чтобы определить, действительно ли поставщик обладает инфраструктурой, необходимой для разработки решения с использованием искусственного интеллекта, руководителям необходимо обсудить с вендором его стратегию развития ИИ.
Капитализируя новые направления в сфере кибербезопасности, некоторые вендоры утверждают, что располагают решениями на базе ИИ. Однако реальность такова, что многие продукты, продвигаемые как искусственный интеллект, являются всего лишь сложными скриптами в сочетании с деревом решений. Разработка настоящего ИИ – это сложная задача, поэтому бизнесу необходимо проявлять скептицизм при общении с вендорами.
Для обеспечения эффективной работы ИИ необходимо обучение на огромном количестве данных. Для этого надо располагать искусственной нейронной сетью (ИНС) и моделью глубокого обучения (deep learning model), которая ускорит анализ данных. Только тогда ИИ сможет использовать данные для обучения, адаптации и развития.
Краткий список того, на что стоит обращать внимание:
Для того, чтобы программа ИИ была готова к работе в полевых условиях, могут потребоваться годы обучения по всем этапам. Имейте в виду, что тем временем киберпреступники разрабатывают новые способы взлома корпоративных систем. Это означает постоянное поступление новых данных о киберпреступниках, которые необходимо постоянно включать в обучение. Модели обучения ИИ необходимо будет постоянно адаптировать к новым угрозам наряду с разработкой новых стратегий борьбы с ними.
Специалисты, принимающие решения в области обеспечения безопасности правы, когда ищут вендоров, решения которых основаны на ИИ. Кривая обучения искусственного интеллекта может быть крутой, но преимущества хорошей системы безопасности, основанной на нем, стоят того, чтобы приложить усилия.
Алексей Андрияшин, технический директор Fortinet в России